Long-Term Variable Milfoil Management Plan

Pearly Pond
Rindge, New Hampshire
Table of Contents

PURPOSE ..4
VARIABLE MILFOIL INFESTATION IN PEARLY POND ..5
MILFOIL MANAGEMENT GOALS AND OBJECTIVES ...7
LOCAL SUPPORT ..7
 TOWN OR MUNICIPALITY SUPPORT ..7
 PEARLY POND LAKE ASSOCIATION SUPPORT ..7
WATERBODY CHARACTERISTICS ..7
BENEFICIAL (DESIGNATED) USES OF WATERBODY ...9
 AQUATIC LIFE ...9
 RECREATIONAL USES AND ACCESS POINTS ..10
MACROPHYTE COMMUNITY EVALUATION ..11
WELLS AND WATER SUPPLIES ..12
HISTORICAL CONTROL ACTIVITIES AND PROGRESS YIELD ..12
AQUATIC INVASIVE PLANT MANAGEMENT OPTIONS ..13
FEASIBILITY EVALUATION OF CONTROL OPTIONS IN THIS WATERBODY ..13
RECOMMENDED ACTIONS, TIMEFRAMES AND RESPONSIBLE PARTIES ..14
NOTES ...16
FIGURE 1: MAP OF VARIABLE MILFOIL INFESTATIONS OVER TIME ..18
FIGURE 2: MAP OF CONTROL ACTIONS OVER TIME ...19
FIGURE 3: MAP OF NATIVE AQUATIC MACROPHYTES ..21
FIGURE 4: BATHYMETRIC MAP ...23
FIGURE 5: CRITICAL HABITATS OR CONSERVATION AREAS ...24
FIGURE 6: PUBLIC ACCESS SITES, SWIM AREAS, DOCKS AND SWIM PLATFORMS ..25
FIGURE 7: WELLS AND WATER SUPPLIES ..26
APPENDIX A. CRITERIA TO EVALUATE THE SELECTION OF AQUATIC PLANT CONTROL TECHNIQUES ...27
APPENDIX B SUMMARY OF CONTROL PRACTICES ...31
 RESTRICTED USE AREAS AND FRAGMENT BARRIER: ..31
 HAND-PULLING: ...31
 DIVER ASSISTED SUCTION HARVESTING: ...32
 MECHANICAL HARVESTING ...32
 BENTHIC BARRIERS: ..32
 TARGETED APPLICATION OF HERBICIDES: ..33
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTENDED DRAWDOWN</td>
<td>34</td>
</tr>
<tr>
<td>DREDGING</td>
<td>34</td>
</tr>
<tr>
<td>BIOLOGICAL CONTROL</td>
<td>34</td>
</tr>
</tbody>
</table>

REFERENCES ... 35
Purpose

The purposes of this exotic aquatic plant management and control plan are:

1. To identify and describe the historic and current exotic aquatic infestation(s) in the waterbody;
2. To identify short-term and long-term exotic aquatic plant control goals;
3. To minimize any adverse effects of exotic aquatic plant management strategies on non-target species;
4. To recommend exotic plant control actions that meet the goals outlined in this plan; and
5. To evaluate control practices used in this waterbody over time to determine if they are meeting the goals outlined in this plan.

This plan also summarizes the current physical, biological, ecological, and chemical components of the subject waterbody as they may relate to both the exotic plant infestation and recommended control actions, and the potential social, recreational and ecological impacts of the exotic plant infestation.

The intent of this plan is to establish an adaptive management strategy for the long-term control of the target species (in this case variable milfoil) in the subject waterbody, using an integrated plant management approach.

Appendix A and Appendix B detail the general best management practices and strategies available for waterbodies with exotic species, and provide more information on each of the activities that are recommended within this plan.

Invasive Aquatic Plant Overview

Exotic aquatic plants pose a threat to the ecological, aesthetic, recreational, and economic values of lakes and ponds (Luken & Thieret, 1997, Halstead, 2000), primarily by forming dense growths or monocultures in critical areas of waterbodies that are important for aquatic habitat and/or recreational use. Under some circumstances, dense growths and near monotypic stands of invasive aquatic plants can result, having the potential to reduce overall species diversity in both plant and animal species, and can alter water chemistry and aquatic habitat structure that is native to the system.

Since January 1, 1998, the sale, distribution, importation, propagation, transportation, and introduction of key exotic aquatic plants have been prohibited (RSA 487:16-a) in New Hampshire. This law was designed as a tool for lake managers to help prevent the spread of nuisance aquatic plants.
New Hampshire lists 27 exotic aquatic plant species as prohibited in the state (per Env-Wq 1303.02) due to their documented and potential threat to surface waters of the state.

According to the federal Section 305(b) and 303(d) Consolidated Assessment and Listing Methodology (CALM), “exotic macrophytes are non-native, fast growing aquatic plants, which can quickly dominate and choke out native aquatic plant growth in the surface water. Such infestations are in violation of New Hampshire regulation Env-Wq 1703.19, which states that surface waters shall support and maintain a balanced, integrated and adaptive community of organisms having a species composition, diversity, and functional organization comparable to that of similar natural habitats of a region” (DES, 2006). In fact, waterbodies that contain even a single exotic aquatic plant do not attain water quality standards and are listed as impaired.

Variable Milfoil Infestation in Pearly Pond

Variable milfoil (*Myriophyllum heterophyllum*) was documented in Pearly Pond in Rindge, New Hampshire in the 1990s. The plant has colonized a large area in the northern end of the lake, and has also established smaller populations in the southern end of two coves, and in the southwestern end of the lake near the dam.

Figure 1 illustrates the distribution of variable milfoil infestations in Pearly Pond over time (note that a dense multi-species cyanobacteria bloom was in effect during the 2009 survey and clarity was poor, so points on the map may not be fully reflective of the milfoil distribution in the lake). Variable milfoil is limited to the nearshore zone in most locations due to dark tannic water and little sunlight penetration. Growth is expansive in the north end of the pond due to the shallow nature of that area.

The following table provides a summary of variable milfoil growth as shown in Figure 1 (area name reference in table below is relative to grid overlay on Figure 1).

<table>
<thead>
<tr>
<th>Area</th>
<th>Location/Area Description</th>
<th>Year</th>
<th>Description of Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1, B2, C2, C3</td>
<td>Northern end of lake. Shallow (mean depth 1m), organic sediments with hummocks and shallow areas throughout.</td>
<td>2009</td>
<td>Dense growth of variable milfoil throughout north end.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2010</td>
<td>Herbicide treatment reduced milfoil densities in north end by 95%. Only single stems very sparsely scattered following treatment. Less than 5% cover.</td>
</tr>
<tr>
<td>Area</td>
<td>Location/Area Description</td>
<td>Year</td>
<td>Description of Growth</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2011</td>
<td>Variable milfoil rebounding slowly, only small patches of growth. Less than 15% cover.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2012</td>
<td>Variable milfoil rebounding in north end, probably 45% cover in area. Local residents confusing abundant native milfoil for variable milfoil, but several patches of variable milfoil intermixed, and posing potential for rapid expansion in next year or two due to density.</td>
</tr>
<tr>
<td></td>
<td>D2, D3, E3</td>
<td>2009</td>
<td>Only sparse to scattered milfoil, less than 10% cover in this area.</td>
</tr>
<tr>
<td></td>
<td>Eastern shoreline. Shallow sandy/gravelly shelf.</td>
<td>2010</td>
<td>Only sparse to scattered milfoil, less than 10% cover in this area.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2011</td>
<td>Only sparse to scattered milfoil, less than 10% cover in this area.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2012</td>
<td>Only sparse to scattered milfoil, less than 10% cover in this area.</td>
</tr>
<tr>
<td></td>
<td>D5</td>
<td>2009</td>
<td>Patchy growth in cove, 40% cover, but rocky substrate makes other control practices a challenge.</td>
</tr>
<tr>
<td></td>
<td>Southeastern cove. Rocky bottom.</td>
<td>2010</td>
<td>Following treatment, milfoil density reduced to less than 5%.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2011</td>
<td>Milfoil density remains at approximately 5% cover.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2012</td>
<td>Milfoil density remains at approximately 5% cover.</td>
</tr>
<tr>
<td></td>
<td>A4, A5</td>
<td>2009</td>
<td>Milfoil density relatively sparse, only about 15% cover, and patchy.</td>
</tr>
<tr>
<td></td>
<td>Southwest cove near outlet end of lake. Rock/sand/silt/muck bottom, with some uplifting of muck sediments due to gas bubbles in substrate.</td>
<td>2010</td>
<td>Milfoil density relatively sparse, only about 15% cover, and patchy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2011</td>
<td>Milfoil density relatively sparse, only about 15% cover, and patchy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2012</td>
<td>Milfoil density increased slightly, roughly 40% cover in thick organic sediments with scattered rock.</td>
</tr>
</tbody>
</table>

In terms of the impacts of the variable milfoil in the system, there are roughly 42 houses around the shoreline of Pearly Pond, and nine back lots that have access or rights-of-way to the pond. Additionally, Franklin Pierce College is located along the northern and northeastern shoreline of the lake, and many students use the pond for swimming, boating and other recreational activities.

Lake residents have recently become more concerned with the variable milfoil growth, and would like to act now before the infestation continues to spread throughout this small pond.
Milfoil Management Goals and Objectives

The goal for Pearly Pond is the reduction of overall biomass and distribution of variable milfoil in the system, with the eventual eradication (if feasible) using an Integrated Pest Management Approach.

Local Support

Town or Municipality Support
The town of Rindge appreciates the importance of keeping the Pearly Pond system usable and controlling the variable milfoil, and supports the efforts of the local lake association to control milfoil but has not allocated funds to any projects.

Pearly Pond Lake Association Support
Many residents around Pearly Pond are concerned about the variable milfoil growth, and are interested in participating in a Weed Watching Program on the lake, to monitor both for expanded growth of the milfoil, and for the possible introduction of any new exotic aquatic plants to the system. DES has performed Weed Watcher training sessions on the pond for interested individuals.

Local divers on the pond are interested in participating in the Weed Control Diver course to become certified to hand-remove variable milfoil from the lake as part of the integrated management approach.

Waterbody Characteristics

The following table summarizes basic physical and biological characteristics of Pearly Pond, including the milfoil infestation. Note that a current review of the Natural Heritage Bureau (NHB) database was requested and the results from that search are included in the table below, as well as in other key sections of this report as they may pertain to the type of species (fish, wildlife, habitat, or macrophyte).
<table>
<thead>
<tr>
<th>Parameter/Measure</th>
<th>Value/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake area (acres)</td>
<td>142.1</td>
</tr>
<tr>
<td>Watershed area (acres)</td>
<td>2,558.9</td>
</tr>
<tr>
<td>Shoreline Uses (residential, forested, agriculture)</td>
<td>Residential, forested, college campus</td>
</tr>
<tr>
<td>Max Depth (ft)</td>
<td>17.82</td>
</tr>
<tr>
<td>Mean Depth (ft)</td>
<td>5.61</td>
</tr>
<tr>
<td>Trophic Status</td>
<td>Eutrophic</td>
</tr>
<tr>
<td>Color (CPU) in Epilimnion</td>
<td>92.5</td>
</tr>
<tr>
<td>Clarity (ft)</td>
<td>3.3</td>
</tr>
<tr>
<td>Flushing Rate (yr-1)</td>
<td>4.4</td>
</tr>
<tr>
<td>Natural waterbody/Raised by Damming/Other</td>
<td>Natural w/dam</td>
</tr>
<tr>
<td>Invasive Plants (Latin name)</td>
<td>Variable milfoil (Myriophyllum heterophyllum)</td>
</tr>
<tr>
<td>Infested Area (acres)</td>
<td>See Figures 1 and 2</td>
</tr>
<tr>
<td>Distribution (ringing lake, patchy growth, etc)</td>
<td>See Figures for historic and current distributions</td>
</tr>
<tr>
<td>Sediment type in infested area (sand/silt/organic/rock)</td>
<td>Organic/rocky/silty</td>
</tr>
<tr>
<td>Rare, Threatened, or Endangered Species in Waterbody (according to NH Natural Heritage Bureau (NHB) Inventory review)</td>
<td>Wood Turtle (Glyptemys insculpta) Banded sunfish (historical information/likely habitat)</td>
</tr>
</tbody>
</table>
A native aquatic vegetation map and key from an October 2006 survey (field checked in 2012) by the DES Biology Section is shown in Figure 3. A bathymetric map is shown in Figure 4.

Beneficial (Designated) Uses of Waterbody

In New Hampshire, beneficial (designated) uses of our waterbodies are categorized into five general categories: Aquatic Life, Fish Consumption, Recreation, Drinking Water Supply, and Wildlife (CALM).

Of these, Aquatic Life, Wildlife and Recreation are the ones most often affected by the presence of invasive plants, though drinking water supplies can also be affected as well in a number of ways.

Following is a general discussion of the most potentially impacted designated uses, including water supplies and near shore wells, as they relate to this system and the actions proposed in this long-term plan.

The goal for aquatic life support is to provide suitable chemical and physical conditions for supporting a balanced, integrated and adaptive community of aquatic organisms having a species composition, diversity, and functional organization comparable to that of similar natural habitats of the region.

Aquatic Life

Fisheries Information (information obtained from an NHB review and information provided by the NH F&G Department)

According to the NH Fish and Game Department, Pearly Pond in Rindge is managed as a warmwater fishery. Most recent fish survey data comes from electrofishing and fyke netting in 1984. The primary gamefish sampled were largemouth bass and chain pickerel. Other species of interest to anglers that were sampled included hornpout, bluegill, and yellow perch. Golden shiners and common white sucker were the baitfish sampled.

This is an excellent largemouth bass fishery and is only accessible to boat anglers with canoes, kayaks, or small jon boats. Angler comments reveal fishing at Pearly Pond to be above average because of good shoreline habitat, lack of disturbances (boats etc.), and lack of easy access. It is one of the best bass ponds in the area and has plenty of baitfish. There are numerous largemouth bass of all size classes and the potential for exceptional sized bass.
Historical New Hampshire Natural Heritage Bureau data show a listing from 2003 of the banded sunfish as being present near Pearly Pond (though this listing did not appear in a recent review of data for this site/area). In terms of impacts of these management practices on this fish species, DES does not anticipate that impacts will be seen as a direct result of the herbicide application. This species needs good/dense mixed stands of aquatic vegetation for habitat. Because there is good target specificity for variable milfoil with the herbicide of choice (2,4-D) it is expected that diverse stands of native aquatic plants will remain following the herbicide application, and that only the variable milfoil will be reduced. Pearly Pond is characterized by stands of dense and diverse native plant communities, including submergent, emergent, and floating species. The herbicide is not toxic to this listed species at concentration, and does not bioaccumulate in fish tissue (the herbicide is excreted in the waste product of these organisms).

In a 2012 review, NHB did report a sighting of a wood turtle in a small pond near Pearly Pond. The wood turtle (*Glyptemys insculpta*) is not federally listed, but it is listed as a species of special concern in NH. According to information provided in the Wildlife Action Plan prepared by the Fish and Game Department, wood turtles are often associated with stream and river habitat with sandy or gravelly substrates in late April and May, and then migrate to upland terrestrial habitats for the summer months, returning to hibernate in the fall in the banks of rivers again. The wood turtle’s diet consists of insects, earthworms, green leaves and fungi, among other items. Main threats to this species appear to be from habitat loss and fragmentation, along with injury and mortality due to land use practices (mowing, mortality on roadways). The NHB review documented one adult wood turtle in 2009 in this area. The Fish and Game Department should comment on specific potential impacts of the proposed milfoil control activities on this species, and ways to mitigate these impacts during their review of the permit application.

There are no NH F&G Wildlife Management Areas within a mile of this waterbody. The Lowe, and Goundry lots encompass approximately 850 acres of conservation land abutting this waterbody. No species are being managed in this area currently.

Recreational Uses and Access Points (information provided by DES, local entities and from GIS coverages)

Pearly Pond is used for numerous recreational activities, including boating (small boats), fishing, and swimming by primarily pond residents and students at Franklin Pierce College. Boat traffic is light as the majority of recreational use is from shore-owner boat traffic and kayakers.
There is a marginal/not well developed public access site on Pearly Pond adjacent to the dam, but its use is generally inhibited by a fence. Access can be achieved off the shoulder of the main road to the Franklin Pierce College.

There is one designated beach on Pearly Pond which is owned by Franklin Pierce College. A designated beach is described in the CALM as an area on a waterbody that is operated for bathing, swimming, or other primary water contact by any municipality, governmental subdivision, public or private corporation, partnership, association, or educational institution, open to the public, members, guests, or students whether on a fee or free basis. Env-Wq 1102.14 further defines a designated beach as “a public bathing place that comprises an area on a water body and associated buildings and equipment, intended or used for bathing, swimming, or other primary water contact purposes. The term includes, but is not limited to, beaches or other swimming areas at hotels, motels, health facilities, water parks, condominium complexes, apartment complexes, youth recreation camps, public parks, and recreational campgrounds or camping parks as defined in RSA 216-I:1, VII. The term does not include any area on a water body which serves 3 or fewer living units and which is used only by the residents of the living units and their guests.

In addition to the designated beach, there are a few small private swim beaches located on private properties around the pond. There are 14 floating docks and swim platforms around the pond as well. Figure 6 shows the locations commonly used for swimming, and the locations of swim platforms and docks on Pearly Pond, as well as the location of the access site.

Macrophyte Community Evaluation

(information obtained from DES field surveys and NHB reviews)

The littoral zone is defined as the nearshore areas of a waterbody where sunlight penetrates to the bottom sediments. The littoral zone is typically the zone of rooted macrophyte growth in a waterbody.

The littoral zone of Pearly Pond is characterized by a mix of native and non-native (variable milfoil) plant growth (Figure 3). Native species include a mix of floating plants (white and yellow water-lilies, watershield), emergent plants (bur-reed, cattail, pickerelweed, rushes, grasses), and submergent plants including various pondweed species and native milfoil (M. humile) which is common throughout the north end of the pond. Native plant communities are mixed around the entire lake, and are characterized as ‘abundant’ by the DES.

An NHB review of the system revealed no state-listed endangered aquatic plants in Pearly Pond.
Wells and Water Supplies

Figure 7 shows the location of wells, water supplies, well-head protection areas, and drinking water protection areas around the subject waterbody, based on information in the DES geographic information system records. Note that it is likely that Figure 7 does not show the location of all private wells.

Note that the map in Figure 7 cannot be provided on a finer scale than 1:48,000. Due to public water system security concerns, a large-scale map may be made available upon agreement with DES’ data security policy. Visit DES’ OneStop Web GIS, http://www2.des.state.nh.us/gis/onestop/ and register to Access Public Water Supply Data Layers. Registration includes agreement with general security provisions associated with public water supply data. Paper maps that include public water supply data may be provided at a larger-scale by DES’ Exotic Species Program after completing the registration process.

In the event that an herbicide treatment is needed for this waterbody, the applicator/contractor will provide more detailed information on the wells and water supplies within proximity to the treatment areas as required in the permit application process with the Division of Pesticide Control at the Department of Agriculture. It is beyond the scope of this plan to maintain updated well and water supply information other than that provided in Figure 7.

Historical Control Activities and Progress Yield

<table>
<thead>
<tr>
<th>DATE</th>
<th>ACTION</th>
<th>AREA (ac)</th>
<th>TARGET</th>
<th>APPLICATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-Jun-08</td>
<td>2,4-D</td>
<td>42.5</td>
<td>VARIABLE MILFOIL</td>
<td>AQUATIC CONTROL TECHNOLOGY</td>
</tr>
<tr>
<td>10-Jun-10</td>
<td>2,4-D</td>
<td>24</td>
<td>VARIABLE MILFOIL</td>
<td>AQUATIC CONTROL TECHNOLOGY</td>
</tr>
<tr>
<td>SUMMER 2010</td>
<td>HAND PULL Patches/STEM in a small cove</td>
<td>VARIABLE MILFOIL</td>
<td>LOCAL DIVER</td>
<td></td>
</tr>
</tbody>
</table>

There was an herbicide treatment on Pearly Pond during summer 2008 and summer 2010, and some small scale diving work by a local diver in 2011, but limited effort since that time. Unfortunately the lake association went through a leadership flux from 2010 through 2011, but it has once again stabilized with a new president who is interested in focusing more in variable milfoil management in years to come. The lake association is also considering some
regular dive work through a contractor who also performs such work on Contoocook Lake, also in Rindge.

Aquatic Invasive Plant Management Options

The control practices used should be as specific to the target species as feasible. No control of native aquatic plants is intended.

Exotic aquatic plant management relies on a combination of proven methods that control exotic plant infestations, including physical control, chemical control, biological controls (where they exist), and habitat manipulation.

Integrated Pest Management Strategies (IPM) are typically implemented using Best Management Practices (BMPs) based on site-specific conditions so as to maximize the long-term effectiveness of control strategies. Descriptions for the control activities are closely modeled after those prescribed by the Aquatic Ecosystem Restoration Foundation (AERF) (2004). This publication can be found online at http://www.aquatics.org/bmp.htm. Additional information can be obtained from a document prepared for the State of Massachusetts called the Generic Environmental Impact Report for Lakes and Ponds, available at http://www.mass.gov/dcr/watersupply/lakepond/geir.htm.

Criteria for the selection of control techniques are presented in Appendix A. Appendix B includes a summary of the exotic aquatic plant control practices currently used by the State of New Hampshire.

Feasibility Evaluation of Control Options in this Waterbody

DES has evaluated the feasibility of potential control practices on the subject waterbody. The following table summarizes DES’ control strategy recommendations for the subject waterbody:

<table>
<thead>
<tr>
<th>Control Method</th>
<th>Use on Pearly Pond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricted Use Areas (RUAs)</td>
<td>The purpose of RUAs and fragment barriers is to contain small areas of exotic aquatic plant growth to prevent them from spreading further in a system.</td>
</tr>
<tr>
<td>and/or Fragment Barriers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If variable milfoil is reduced by other integrated approaches outlined in this plan, then RUAs and fragment barriers may be a future consideration based on the size, configuration and location of remaining areas of growth.</td>
</tr>
<tr>
<td>Hand-pulling/Diver</td>
<td>Diver work (either simple diving or DASH) is</td>
</tr>
</tbody>
</table>
Control Method | Use on Pearly Pond
--- | ---
Assisted Suction Harvesting (DASH) | recommended on a routine basis through the growing season each year, to keep milfoil levels reduced.

Diver/DASH work may be a challenge in the northern end of the pond, due to shallow depth of water, hummocks, and tannic water conditions, but diver work should be attempted, if feasible.

It is recommended that once the herbicide treatment is performed, that the lake association look to bring in a diver on retainer, for a few days a month during the growing season, to help keep milfoil from increase in coverage once again. This effort should be led by local Weed Watchers, who should monitor and mark milfoil monthly, to help guide dive work.

Mechanical Harvesting/Removal | Not recommended due to the risk of fragmentation and drift, and subsequent further spread of the invasive plant.

Benthic Barriers | Recommended for small patches that are 20’ x 20’ in size or less, and where practical.

Herbicides | Herbicide treatment is recommended as a primary means of control only where infestations of the exotic plant are too widespread and/or dense for non-chemical means of control to be effective.

Extended Drawdown | Not feasible or practical given the configuration of the impoundment on this waterbody.

Dredge | Cost prohibitive and not often effective for controlling invasive aquatic plants.

Biological Control | No biological controls are yet approved for use on variable milfoil.

No Control | This pond has a history of rapid increases in milfoil density due to the organic nature of the substrates. A no control option will only result in increased milfoil coverage.

Recommended Actions, Timeframes and Responsible Parties

An evaluation of the size, location, and type of variable milfoil infestation, as well as the waterbody uses was conducted at the end of the last growing season (see attached figures for findings). Based on this survey the following recommendations are made for variable milfoil control in the system:
<table>
<thead>
<tr>
<th>Year</th>
<th>Action</th>
<th>Responsible Party</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>Weed Watching and marking/reporting of milfoil growth</td>
<td>Local Weed Watchers</td>
<td>Once a month from May through September</td>
</tr>
<tr>
<td></td>
<td>Herbicide treatment of areas indicated for 2013</td>
<td>Aquatic Control Technology, Inc.</td>
<td>May/June</td>
</tr>
<tr>
<td></td>
<td>Diver/DASH work as needed and recommended (areas to be determined based on updated spring survey)</td>
<td>Contract Diver</td>
<td>June-September as needed</td>
</tr>
<tr>
<td></td>
<td>Survey waterbody and planning for next season’s control actions</td>
<td>DES</td>
<td>September</td>
</tr>
<tr>
<td>2014</td>
<td>Weed Watching and marking/reporting of milfoil growth</td>
<td>Local Weed Watchers</td>
<td>Once a month from May through September</td>
</tr>
<tr>
<td></td>
<td>Survey and planning for summer/fall milfoil control actions</td>
<td>DES</td>
<td>May/June</td>
</tr>
<tr>
<td></td>
<td>Diver/DASH work as needed and recommended (areas to be determined based on need)</td>
<td>Contract Diver</td>
<td>June-September as needed</td>
</tr>
<tr>
<td></td>
<td>Herbicide treatment, if needed, based on diver progress as monitored by DES (areas to be determined based on need)</td>
<td>TBD</td>
<td>June or September</td>
</tr>
<tr>
<td></td>
<td>Survey and planning for next season’s control actions</td>
<td>DES</td>
<td>September</td>
</tr>
<tr>
<td>2015</td>
<td>Weed Watching and marking/reporting of milfoil growth</td>
<td>Local Weed Watchers</td>
<td>Once a month from May through September</td>
</tr>
<tr>
<td></td>
<td>Survey and planning for summer/fall milfoil control actions</td>
<td>DES</td>
<td>May/June</td>
</tr>
<tr>
<td></td>
<td>Diver/DASH work as needed and recommended (areas to be determined based on need)</td>
<td>Contract Diver</td>
<td>June-September as needed</td>
</tr>
<tr>
<td>Year</td>
<td>Action</td>
<td>Responsible Party</td>
<td>Schedule</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Survey and planning for next season’s control actions</td>
<td>DES</td>
<td>September</td>
</tr>
<tr>
<td>2016</td>
<td>Weed Watching and marking/reporting of milfoil growth</td>
<td>Local Weed Watchers</td>
<td>Once a month from May through September</td>
</tr>
<tr>
<td></td>
<td>Survey and planning for summer/fall milfoil control actions</td>
<td>DES</td>
<td>May/June</td>
</tr>
<tr>
<td></td>
<td>Diver/DASH work as needed and recommended (areas to be determined based on need)</td>
<td>Contract Diver</td>
<td>June-September as needed</td>
</tr>
<tr>
<td></td>
<td>Survey and planning for next season’s control actions</td>
<td>DES</td>
<td>September</td>
</tr>
<tr>
<td>2017</td>
<td>Weed Watching and marking/reporting of milfoil growth</td>
<td>Local Weed Watchers</td>
<td>Once a month from May through September</td>
</tr>
<tr>
<td></td>
<td>Survey and planning for summer/fall milfoil control actions</td>
<td>DES</td>
<td>May/June</td>
</tr>
<tr>
<td></td>
<td>Diver/DASH work as needed and recommended (areas to be determined based on need and updated survey)</td>
<td>Contract Diver</td>
<td>June-September as needed</td>
</tr>
<tr>
<td></td>
<td>Survey and planning for next season’s control actions</td>
<td>DES</td>
<td>September</td>
</tr>
<tr>
<td>2018</td>
<td>Update and revise Long-Term Variable Milfoil Control Plan</td>
<td>DES and Interested Parties</td>
<td>Fall/Winter</td>
</tr>
</tbody>
</table>

Notes

Target Specificity

It is important to realize that aquatic herbicide applications are conducted in a specific and scientific manner. To the extent feasible, the permitting authority favors the use of selective herbicides that, where used appropriately, will control the target plant with little or no impact to non-target species, such that the ecological functions of native plants for habitat, lake ecology, and
chemistry/biology will be maintained. Not all aquatic plants will be impacted as a result of an herbicide treatment.

Adaptive Management

Because this is a natural system that is being evaluated for management, it is impossible to accurately predict a management course over five years that could be heavily dependent on uncontrolled natural circumstances (weather patterns, temperature, adaptability of invasive species, etc).

This long-term plan is therefore based on the concept of adaptive management, where current field data (from field survey work using DES established field survey standard operating procedures) drive decision making, which may result in modifications to the recommended control actions and timeframes for control. As such, this management plan should be considered a dynamic document that is geared to the actual field conditions that present themselves in this waterbody.

If circumstances arise that require the modification of part or all of the recommendations herein, interested parties will be consulted for their input on revisions that may be needed to further the goal of variable milfoil and fanwort management in the subject waterbody.
Figure 1: Map of Variable Milfoil Infestations Over Time
Figure 2: Map of Control Actions Over Time

2010
2013 (proposed)
Figure 3: Map of Native Aquatic Macrophytes
(prepared in 2009, updated 2011)

Pearly Lake
Rindge
Key to Macrophyte Map

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Common Name</th>
<th>Latin Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Bur-reed</td>
<td>Sparganium</td>
</tr>
<tr>
<td>T</td>
<td>Cattail</td>
<td>Typha</td>
</tr>
<tr>
<td>P</td>
<td>Pickerelweed</td>
<td>Pontedaria cordata</td>
</tr>
<tr>
<td>J</td>
<td>Unknown common name</td>
<td>Juncus</td>
</tr>
<tr>
<td>M</td>
<td>Variable milfoil</td>
<td>Myriophyllum heterophyllum</td>
</tr>
<tr>
<td>N</td>
<td>White water-lily</td>
<td>Nymphaea</td>
</tr>
<tr>
<td>W</td>
<td>Pondweed sp.</td>
<td>Potamogeton sp.</td>
</tr>
<tr>
<td>Y</td>
<td>Yellow water-lily</td>
<td>Nuphar</td>
</tr>
<tr>
<td>B</td>
<td>Watershield</td>
<td>Brasenia schreberi</td>
</tr>
<tr>
<td>G</td>
<td>Grasses</td>
<td>Unknown genus/species</td>
</tr>
</tbody>
</table>
Figure 4: Bathymetric Map

Pearly Lake
Rindge

depth contours in feet
Figure 5: Critical Habitats or Conservation Areas
(data provided by NHB or F&G)
Figure 6: Public Access Sites, Swim Areas, Docks and Swim Platforms

Pearly Lake
Ridge

Dock Type
- Dock
- Swim Raft
- Swim Area

Legend:
- Dock
- Swim Raft
- Swim Area

Scale:
- 0
- 0.05
- 0.1
- 0.2 Miles

Map of Pearly Lake showing public access sites, swim areas, docks, and swim platforms.
Figure 7: Wells and Water Supplies, 1:48,000 scale (note that this map may be incomplete relative to data on private water supply wells.)
Appendix A Criteria to Evaluate the Selection of Aquatic Plant Control Techniques

Preliminary Investigations

I. Field Site Inspection

- Verify genus and species of the plant.
- Determine if the plant is a native or exotic species per RSA 487:16, II.
- Map extent of the exotic aquatic plant infestation (area, water depth, height of the plant, density of the population).
- Document any native plant abundances and community structure around and dispersed within the exotic/nuisance plant population (provide updated native plant map after review of milfoil in the Fall or after treatment).

II. Office/Laboratory Research of Waterbody Characteristics

- Contact the appropriate agencies to determine the presence of rare or endangered species in the waterbody or its prime wetlands.
- Determine the basic relevant limnological characteristics of the waterbody (size, bathymetry, flushing rate, nutrient levels, trophic status, and type and extent of adjacent wetlands).
- Determine the potential threat to downstream waterbodies from the exotic aquatic plant based on limnological characteristics (water chemistry, quantity, quality as they relate to movement or support of exotic plant growth).

Overall Control Options

For any given waterbody that has an infestation of exotic plants, one of four options will be selected, based on the status of the infestation, the available management options, and the technical knowledge of the DES Limnologists and other key resource managers who have conducted the field work and who are preparing or contributing to this plan. The options are as follows:

1) Eradication: The goal is to completely remove the exotic plant infestation over time. In some situations this may be a rapid response that results in an eradication event in a single season (such as for a new infestation), in other situations a longer-term approach may be warranted given the age and distribution of the infestation. Eradication is more feasible in smaller systems without extensive expanded growth (for example, Lake Winnipesaukee is unlikely to achieve eradication of its variable milfoil), or without upstream sources of infestation in other connected systems that continually feed the lake.

2) Maintenance: Waterbodies where maintenance is specified as a goal are generally those with expansive infestations, that are larger systems, that have complications of extensive
wetland complexes on their periphery, or that have upstream sources of the invasive plant precluding the possibility for eradication. For waterbodies where maintenance is the goal, control activities will be performed on the waterbody to keep an infestation below a desirable threshold. For maintenance projects, thresholds of percent cover or other measurable classification will be indicated, and action will occur when exotic plant growth exceeds the threshold.

3) Containment: The aim of this approach is to limit the size and extent of the existing infestation within an infested waterbody if it is localized in one portion of that waterbody (such as in a cove or embayment), or if a whole lake is infested action may be taken to prevent the downstream migration of fragments or propagules. This could be achieved through the use of fragment barriers and/or Restricted Use Areas or other such physical means of containment. Other control activities may also be used to reduce the infestation within the containment area.

4) No action. If the infestation is too large, spreading too quickly, and past management strategies have proven ineffective at controlling the target exotic aquatic plant, DES, in consultation with others, may elect to recommend ‘no action’ at a particular site. Feasibility of control or control options may be revisited if new information, technologies, etc., develop.

If eradication, maintenance or containment is the recommended option to pursue, the following series of control techniques may be employed. The most appropriate technique(s) based on the determinations of the preliminary investigation will be selected.

Guidelines and requirements of each control practice are suggested and detailed below each alternative, but note that site specific conditions will be factored into the evaluation and recommendation of use on each individual waterbody with an infestation.

A. Hand-Pulling and Diver-Assisted Suction Harvesting

- Hand-pulling can be used if infestation is in a small localized area (sparsely populated patch of up to 5’ X 5’, single stems, or dense small patch up to 2’ X 2’). For larger areas Diver-Assisted Suction Harvesting (DASH) may be more appropriate.
- Can be used if plant density is low, or if target plant is scattered and not dense.
- Can be used if the plant could effectively be managed or eradicated by hand-pulling or DASH
- Use must be in compliance with the Wetlands Bureau rules.

B. Mechanically Harvest or Hydro-Rake

- Can not be used on plants which reproduce vegetatively by fragmentation (e.g., milfoil, fanwort, etc.) unless containment can be ensured.
• Can be used only if the waterbody is accessible to machinery.
• Can be used if there is a disposal location available for harvested plant materials.
• Can be used if plant depth is conducive to harvesting capabilities (~<7 ft. for mower, ~<12 ft. for hydro-rake).
• If a waterbody is fully infested and no other control options are effective, mechanical harvesting can be used to open navigation channel(s) through dense plant growth.

C. Herbicide Treatment

• Can be used if application of herbicide is conducted in areas where alternative control techniques are not optimum due to depth, current, use, or density and type of plant.
• Can be used for treatment of exotic plants where fragmentation is a high concern.
• Can be used where species specific treatment is necessary due to the need to manage other plants.
• Can be used if other methods used as first choices in the past have not been effective.
• A licensed applicator should be contacted to inspect the site and make recommendations about the effectiveness of herbicide treatment as compared with other treatments.

D. Restricted Use Areas (per RSA 487:17, II (d))

• Can be established in an area that effectively restricts use to a small cove, bay, or other such area where navigation, fishing, and other transient activities may cause fragmentation to occur.
• Can not be used when there are several “patches” of an infestation of exotic aquatic plants throughout a waterbody.
• Can be used as a temporary means of control.

E. Bottom Barrier

• Can be used in small areas, preferably less than 10,000 sq. ft.
• Can be used in an area where the current is not likely to cause the displacement of the barrier.
• Can be used early in the season before the plant reaches the surface of the water.
• Can be used in an area to compress plants to allow for clear passage of boat traffic.
• Can be used in an area to compress plants to allow for a clear swimming area.
• Use must be in compliance with the Wetlands Bureau rules.
F. Drawdown

- Can be used if the target plant(s) are susceptible to drawdown control.
- Can be used in an area where bathymetry of the waterbody would be conducive to an adequate level of drawdown to control plant growth, but where extensive deep habits exist for the maintenance of aquatic life such as fish and amphibians.
- Can be used where plants are growing exclusively in shallow waters where a drawdown would leave this area “in the dry” for a suitable period of time (over winter months) to control plant growth.
- Can be used in winter months to avoid encroachment of terrestrial plants into the aquatic system.
- Can be used if it will not significantly impact adjacent or downstream wetland habitats.
- Can be used if spring recharge is sufficient to refill the lake in the spring.
- Can be used in an area where shallow wells would not be significantly impacted.
- Reference RSA 211:11 with regards to drawdown statutes.

G. Dredge

- Can be used in conjunction with a scheduled drawdown.
- Can be used if a drawdown is not scheduled, though a hydraulic pumping dredge should be used.
- Can only be used as a last alternative due to the detrimental impacts to environmental and aesthetic values of the waterbody.

H. Biological Control

- Grass carp cannot be used as they are illegal in New Hampshire.
- Exotic controls, such as insects, cannot be introduced to control a nuisance plant unless approved by Department of Agriculture.
- Research should be conducted on a potential biological control prior to use to determine the extent of target specificity.
Appendix B Summary of Control Practices

Restricted Use Areas and Fragment Barrier:
Restricted Use Areas (RUAs) are a tool that can be use to quarantine a portion of a waterbody if an infestation of exotic aquatic plants is isolated to a small cove, embayment, or section of a waterbody. RUAs generally consist of a series of buoys and ropes or nets connecting the buoys to establish an enclosure (or exclosure) to protect an infested area from disturbance. RUAs can be used to prevent access to these infested areas while control practices are being done, and provide the benefit of restricting boating, fishing, and other recreational activities within these areas, so as to prevent fragmentation and spread of the plants outside of the RUA.

Hand-pulling:
Hand-pulling exotic aquatic plants is a technique used on both new and existing infestations, as circumstances allow. For this technique divers carefully hand-remove the shoots and roots of plants from infested areas and place the plant material in mesh dive bags for collect and disposal. This technique is suited to small patches or areas of low density exotic plant coverage.

For a new infestation, hand-pulling activities are typically conducted several times during the first season, with follow-up inspections for the next 1-2 years or until no re-growth is observed. For existing infestations, hand-pulling may be done to slow the expansion of plant establishment in a new area or where new stems are removed in a section that may have previously been uninfested. It is often a follow-up technique that is included in most management plans.

In 2007 a new program was created through a cooperative between a volunteer monitor that is a certified dive instructor, and the DES Exotic Species Program. A Weed Control Diver Course (WCD) was developed and approved through the Professional Association of Dive Instructors (PADI) to expand the number of certified divers available to assist with hand-pulling activities. DES has only four certified divers in the Limnology Center to handle problems with aquatic plants, and more help was needed. There is a unique skill involved with hand-removing plants from the lake bottom. If the process is not conducted correctly, fragments could spread to other waterbody locations. For this reason, training and certification are needed to help ensure success. Roughly 100 divers were certified through this program through the 2010 season. DES maintains a list of WCD divers and shares them with waterbody groups and municipalities that seek diver assistance for controlling exotic aquatic plants. Classes are offered two to three times per summer.
Diver Assisted Suction Harvesting
Diver Assisted Suction Harvesting (DASH) is an emerging and evolving control technique in New Hampshire. The technique employs divers that perform hand removal actions as described above, however, instead of using a dive bag a mechanical suction device is used to entrain the plants and bring them topside where a tender accumulates and bags the material for disposal. Because of this variation divers are able to work in moderately dense stands of plants that cover more bottom area, with increased efficiency and accuracy.

Mechanical Harvesting
The process of mechanical harvesting is conducted by using machines which cut and collect aquatic plants. These machines can cut the plants up to twelve feet below the water surface. The weeds are cut and then collected by the harvester or other separate conveyer-belt driven device where they are stored in the harvester or barge, and then transferred to an upland site.

The advantages of this type of weed control are that cutting and harvesting immediately opens an area such as boat lanes, and it removes the upper portion of the plants. Due to the size of the equipment, mechanical harvesting is limited to water areas of sufficient size and depth. It is important to remember that mechanical harvesting can leave plant fragments in the water, which if not collected, may spread the plant to new areas. Additionally harvesters may impact fish and insect populations in the area by removing them in harvested material. Cutting plant stems too close to the bottom can result in re-suspension of bottom sediments and nutrients. This management option is only recommended when nearly the entire waterbody is infested, and harvesting is needed to open navigation channels through the infested areas.

Benthic Barriers:
Benthic barriers are fiberglass coated screening material that can be applied directly to the lake bottom to cover and compress aquatic plant growth. Screening is staked or weighted to the bottom to prevent it from becoming buoyant or drifting with current. The barriers also serve to block sunlight and prevent photosynthesis by the plants, thereby killing the plants with time. While a reliable method for small areas of plants (roughly 100 sq. ft. or less), larger areas are not reasonably controlled with this method due to a variety of factors (labor intensive installation, cost, and gas accumulation and bubbling beneath the barrier).
Targeted Application of Herbicides:

Application of aquatic herbicides is another tool employed for controlling exotic aquatic plants. Generally, herbicides are used when infestations are too large to be controlled using other alternative non-chemical controls, or if other techniques have been tried and have proven unsuccessful. Each aquatic plant responds differently to different herbicides and concentrations of herbicides, but research performed by the Army Corps of Engineers has isolated target specificity of a variety of aquatic herbicides for different species.

Generally, 2,4-D (Navigate formulation) is the herbicide that is recommended for control of variable milfoil. Based on laboratory data this is the most effective herbicide in selectively controlling variable milfoil in New Hampshire’s waterbodies.

A field trial was performed during the 2008 summer using the herbicide Renovate to control variable milfoil. Renovate is a systemic aquatic herbicide that targets both the shoots and the roots of the target plant for complete control. In this application it was dispersed as a granular formulation that sank quickly to the bottom to areas of active uptake of the milfoil plants. A small (<5 acre) area of Captains Pond in Salem was treated with this systemic herbicide. The herbicide was applied in pellet form to the infested area in May 2008, and showed good control by the end of the growing season. Renovate works a little more slowly to control aquatic plants than 2,4-D and it is a little more expensive, but presents DES with another alternative that could be used in future treatments.

During the summer of 2010, DES worked with other researchers to perform field trials of three different formulations of 2,4-D in Lake Winnisquam, to determine which product was most target-specific to the variable milfoil. Navigate formulation was used, as were a 2,4-D amine formulation, and a 2,4-D amine and triclopyr formulation (MaxG). Although the final report has not been completed for this study, preliminary results suggest that all three products worked well, but that Navigate formation may be the most target specific of all three.

Another herbicide, Fluridone, is sometimes also used in New Hampshire, mainly to control growths of fanwort (Cabomba caroliniana). Fluridone is a systemic aquatic herbicide that inhibits the formation of carotenoids in plants. Reduced carotenoids pigment ultimately results in the breakdown of chlorophyll and subsequent loss of photosynthetic function of the plants.

Other aquatic herbicides are also used in New Hampshire when appropriate (glyphosate, copper compounds, etc). The product of choice will
be recommended based on what the target species is, and other waterbody-specific characteristics that are important to consider when selecting a product.

Extended Drawdown
Extended drawdown serves to expose submersed aquatic plants to dessication and scouring from ice (if in winter), physically breaking down plant tissue. Some species can respond well to drawdown and plant density can be reduced, but for invasive species drawdown tends to yield more disturbance to bottom sediments, something to which exotic plants are most adapted. In waterbodies where drawdown is conducted exotic plants can often outcompete native plants for habitat and come to dominate the system.

Some waterbodies that are heavily infested with exotic plants do conduct drawdowns to reduce some of the invasive aquatic plant density. During this reporting period both Northwood Lake (Northwood) and Jones Pond (New Durham) coordinated deep winter drawdowns to reduce growths of variable milfoil (the drawdown on Northwood Lake is primarily for flood control purposes, but they do see some ancillary benefits from the technique for variable milfoil control).

Dredging
Dredging is a means of physical removal of aquatic plants from the bottom sediments using a floating or land-based dredge. Dredging can create a variety of depth gradients creating multiple plant environments allowing for greater diversity in lakes plant, fish, and wildlife communities. However due to the cost, potential environmental effects, and the problem of sediment disposal, dredging is rarely used for control of aquatic vegetation alone.

Dredging can take place in to fashion, including drawdown followed by mechanical dredging using an excavator, or using a diver-operated suction dredge while the water level remains up.

Biological Control
There are no approved biological controls for submersed exotic aquatic plant at this time in New Hampshire.
References

